

#### Agricultural Producers' Willingness to Accept Payments for Improving Water Resources in the Florida Aquifer

Unmesh Koirala<sup>1</sup>, Jose R. Soto<sup>2</sup> and **Damian C. Adams<sup>1</sup>** <sup>1</sup> University of Florida, Gainesville, FL <sup>2</sup> University of Arizona, Tucson, AZ

The 7<sup>th</sup> UF Water Institute Symposium, Gainesville, Florida Feb 25, 2020

Results represent work in progress and are not yet peer reviewed. They are based upon work that is supported by the National Institute of Food and Agriculture, U.S. Department of Agriculture, under award number 2017-68007-26319. Any opinions, findings, conclusions, or recommendations expressed in this publication are those of the author(s) and do not necessarily reflect the view of the U.S. Department of Agriculture.



United StatesNational InstituteDepartment ofof Food andAgricultureAgriculture







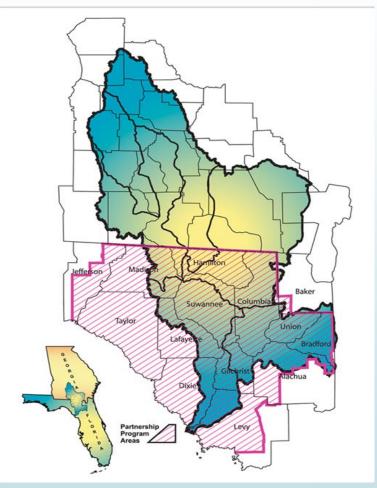


# The Floridan Aquifer

• Among largest & most productive aquifers

- Supports urban, ag, forestry, & environmental water uses
- Not meeting state and federal environmental standards
- Need for a transformative modifications in regional production systems




Fig: Upper Floridan Aquifer Region

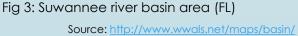



Fig: Aerial view of land within the UFA region Source: Google Maps

### Study Area

- Lower Suwannee river basin area
- Predominantly planted pine, pasture and agronomic crops (e.g. corn, peanuts, cotton, hay)
- 9000 farms in the region covering 1.3 million acres (Athearn, 2017)
- Around 1.9 million acres of pine forest, of which 83% represented by private forestland (FIA EVALIDator, 2020)





# Focus of the study

- Analyze row crop and forest landowners' preference for conservationbased incentive programs
- Estimate their willingness to accept (WTA) payments to incentivize BMP adoption

• Generate a supply curve for alternative management scenarios and water resource outcomes

#### Enterprise-level economics of row crops, stochastic modeling

| Crop           | Prog    | Progressive System |        |         | Semi-progressive<br>System |         |         | Conventional System |        |  |
|----------------|---------|--------------------|--------|---------|----------------------------|---------|---------|---------------------|--------|--|
|                | Min     | Max                | Mean   | Min     | Max                        | Mean    | Min     | Max                 | Mean   |  |
| Corn           |         |                    |        |         |                            |         |         |                     |        |  |
| w/o fixed cost | (\$195) | \$573              | \$173  | (\$227) | \$618                      | \$141   | (\$148) | \$562               | \$194  |  |
| w/ fixed cost  | (\$442) | \$315              | (\$75) | (\$479) | \$369                      | (\$110) | (\$398) | \$327               | (\$52) |  |
| Peanut         |         |                    |        |         |                            |         |         |                     |        |  |
| w/o fixed cost | \$69    | \$857              | \$449  | \$75    | \$783                      | \$459   | \$67    | \$836               | \$412  |  |
| w/ fixed cost  | (\$243) | \$547              | \$139  | (\$229) | \$474                      | \$150   | (\$264) | \$508               | \$81   |  |

**Note:** Parenthesis () represents negative values



Results represent work in progress and are not yet peer reviewed

#### Enterprise-level economics of pines, stochastic modeling

| Crop             | Intensive System |     | Semi-intensive System |      |       | Semi-intensive System<br>w/ pinestraw raking |      |      | Natural System |      |       |      |      |
|------------------|------------------|-----|-----------------------|------|-------|----------------------------------------------|------|------|----------------|------|-------|------|------|
|                  |                  | Min | Max                   | Mean | Min   | Max                                          | Mean | Min  | Max            | Mean | Min   | Max  | Mean |
| Slash<br>pine    | EAV              | \$8 | \$62                  | \$33 | \$6   | \$66                                         | \$31 | \$44 | \$72           | \$51 | \$4   | \$49 | \$26 |
|                  | Rotation<br>age  | 23  | 27                    | 25   | 23    | 28                                           | 25   | 18   | 19             | 18   | 21    | 29   | 25   |
| Loblolly<br>pine | EAV              | \$9 | \$94                  | \$57 | (\$4) | \$76                                         | \$43 | -    | -              | -    | \$9   | \$73 | \$40 |
|                  | Rotation<br>age  | 19  | 26                    | 21   | 20    | 29                                           | 23   | -    | -              | -    | 17    | 25   | 21   |
| Longleaf<br>pine | EAV              | -   | -                     | -    | -     | -                                            | -    | \$3  | \$41           | \$24 | (\$9) | \$22 | \$7  |
|                  | Rotation<br>age  | -   | -                     | -    | -     | -                                            | -    | 30   | 42             | 37   | 33    | 41   | 39   |

Note: Parenthesis () represents negative values; EAV represents Equivalent annual value



Results represent work in progress and are not yet peer reviewed

#### **Economic and Environmental Tradeoffs**

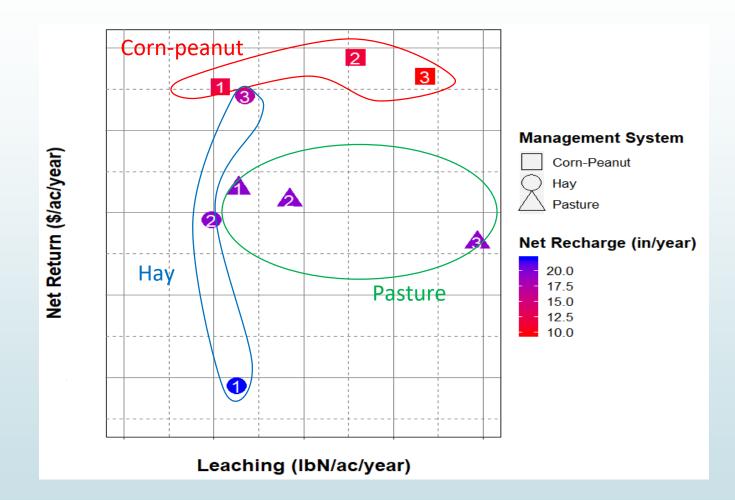



Fig: Relationship between net returns, nitrate leaching and net recharge for major crops in the UFA region



Results represent work in progress and are not yet peer reviewed

# Best-Worst Choice Method

- Combines discrete choice experiments (DCE) and Best-Worst scaling (BWS)
- Allows comparison of utility of bundle attributes as well as produce WTA compensation estimates (Soto et al. 2016)

| Attributes                               | Level                                                                                                                           |  |  |  |  |  |  |
|------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|
| Net return                               | \$20/acre decrease in net return                                                                                                |  |  |  |  |  |  |
| Yields                                   | 5% increase in yield                                                                                                            |  |  |  |  |  |  |
| Cost-share<br>reimbursement              | 85% cost-share reimbursement                                                                                                    |  |  |  |  |  |  |
| Enrollment                               | Availability of technical assistance                                                                                            |  |  |  |  |  |  |
| Would you enroll in this program?<br>Yes | Step 1:                                                                                                                         |  |  |  |  |  |  |
| decision?                                | ou consider the most and the least preferable for making your enrollmen<br>erred and one option as <u>the least preferred</u> ) |  |  |  |  |  |  |
| Most Preferred                           | Least Preferred                                                                                                                 |  |  |  |  |  |  |

 $\bigcirc$ 

\$20/acre decrease in net return 5% increase in yield 85% cost-share reimbursement Availability of technical assistance

### Survey Attributes and levels

#### Row crops survey

Forest crops survey

| Attributes                  | Description                                                                                                  | Levels                                                                                                                                                     | Attributes                   | Description                                                                                                                                           | Levels                                                                                                                                                 |  |
|-----------------------------|--------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Net return                  | Change in net return on investment<br>for a crop in one growing season<br>under BMPs required by the program | <ul> <li>\$20/acre decrease</li> <li>\$10/acre increase</li> <li>\$20/acre increase</li> </ul>                                                             | Net return                   | Change in net return on investment<br>(in terms of Net Present Value) over a<br>single rotation under management<br>practices required by the program | <ul> <li>\$100/acre decrease</li> <li>\$100/acre increase</li> <li>\$150/acre increase</li> </ul>                                                      |  |
| Yields                      | Change on yields for a crop in one<br>growing season under BMPs required<br>by the program                   | - 5% decrease<br>- No change<br>- 5% increase                                                                                                              | Reduction in production cost | Change in production cost under<br>management practices required by<br>the program                                                                    | - \$25/acre increase<br>- \$25/acre decrease<br>- \$50/acre decrease                                                                                   |  |
| Cost-share<br>reimbursement | Percentage of the cost associated<br>with BMPs start-up and/or installation<br>that is reimbursed            | - 60%<br>- 75%<br>- 90%                                                                                                                                    | Incentive<br>amount          | Incentive amount provided for<br>participating in the program                                                                                         | - \$5/acre/year<br>- \$15/acre/year<br>- \$30/acre/year                                                                                                |  |
| Enrollment                  | Provisions to help ease the cost-share<br>program enrollment process                                         | <ul> <li>Availability of<br/>technical<br/>assistance</li> <li>Minimal paperwork<br/>requirements</li> <li>Minimal eligibility<br/>requirements</li> </ul> | Enrollment                   | Provisions to help ease the incentive<br>program enrollment process                                                                                   | <ul> <li>Availability of<br/>technical assistance</li> <li>Minimal paperwork<br/>requirements</li> <li>Minimal eligibility<br/>requirements</li> </ul> |  |

#### **Expected Outcomes**

• Estimate the influence of specific program features on the likelihood of participation

• Estimate WTA for different attributes and their levels

• Help inform landowners choices about incentive program design and expected social value associated with policy interventions

#### WTA estimates from previous literature

| Literature           | Practice                                                                                                | WTA           |  |  |
|----------------------|---------------------------------------------------------------------------------------------------------|---------------|--|--|
| Matta et al. 2016    | Delaying timber harvest up<br>to 50 years                                                               | \$53/ha/year  |  |  |
|                      | Prescribed burning every 2-<br>3 years                                                                  | \$9/ha/year   |  |  |
| Joshi et al. 2013    | Forgo harvesting that<br>cause substantial<br>environmental quality<br>effect                           | \$116/ha/year |  |  |
| Mutandwa et al. 2019 | Delaying harvest by 10<br>years with light thinning<br>and enhanced provisions<br>of ecosystem services | \$448/ha/year |  |  |

#### WTA and Participation

Figure 1. Predicted Responses by Bid level

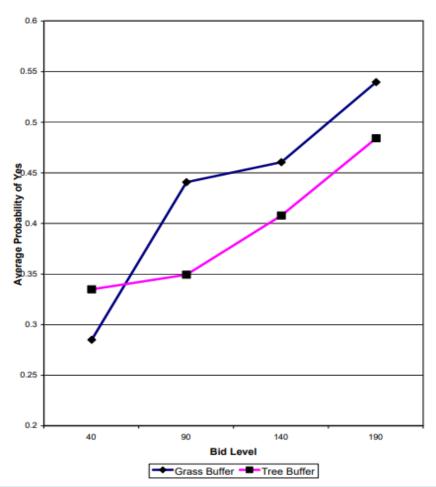



Fig: Agricultural landowners' Willingness to Participate in Streamside protection program based on incentive bid amount (Lynch et al. 2002)

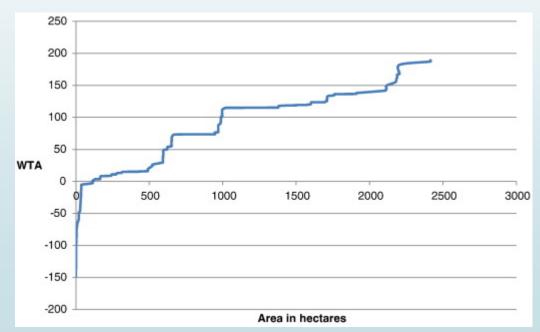



Fig: Relation between forest landowners' WTA and forest area set aside undisturbed (Vedel et al. 2015)



# Thank you!

Dr. Damian C. Adams

dcadams@ufl.edu

# Floridan Aquifer Collaborative Engagement for Sustainability

#### **References:**

- Athearn, K. (2017). Agriculture in the Suwannee River Water Management District. Suwanee Valley Agricultural Extension Center, Live Oak, FL. Available at: http://svaec.ifas.ufl.edu/media/svaecifasufledu/docs/pdf/agribusiness/SRWMDAgFactSheet.pdf
- FIA Evalidator. (2020). Forest Inventory and Analysis Database, St. Paul, MN: U.S. Department of Agriculture, Forest Service, Northern Research Station. [Available only on internet: <u>https://apps.fs.usda.gov/fia/datamart/datamart.html</u>] Assessed: February 20, 2020.
- Joshi, O., & Mehmood, S. R. (2011). Factors affecting nonindustrial private forest landowners' willingness to supply woody biomass for bioenergy. *Biomass and Bioenergy*, *35*(1), 186-192.
- Lynch, L., Hardie, I. W., & Parker, D. D. (2002). Analyzing agricultural landowners' willingness to install streamside bufferes (No. 1667-2016-136178).
- Matta, J. R., Alavalapati, J. R., & Mercer, D. E. (2009). Incentives for biodiversity conservation beyond the best management practices: are forestland owners interested?. *Land Economics*, *85*(1), 132-143.
- Mutandwa, E., Grala, R. K., & Petrolia, D. R. (2019). Estimates of willingness to accept compensation to manage pine stands for ecosystem services. *Forest Policy and Economics*, *102*, 75-85.
- Shaffer, S., & Thompson, E. (2013). Encouraging California Specialty Crop Growers to Adopt Environmentally Beneficial Management Practices for Efficient Irrigation and Nutrient Management: Lessons from a Producer Survey and Focus Groups. American Farmland Trust.
- Soto, J. R., Adams, D. C., & Escobedo, F. J. (2016). Landowner attitudes and willingness to accept compensation from forest carbon offsets: Application of bestworst choice modeling in Florida USA. *Forest Policy and Economics*, *63*, 35-42.
- Vedel, S. E., Jacobsen, J. B., & Thorsen, B. J. (2015). Forest owners' willingness to accept contracts for ecosystem service provision is sensitive to additionality. *Ecological Economics*, *113*, 15-24.